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Abstract ment in image quality can be achieved by changing the

ratio between the carrier and the raster period from an

Among the various digital halftoning methods, carrierinteger to a rational value. This has been demonstrated
procedures have the advantage of being fast and requatnd analyzed for one-dimensional carriers with a spe-
ing few computational resources. However, because thegific shape’©In this paper we present a new analysis of
are pixel-oriented algorithms, they offer less flexibility the situation that also applies for two-dimensional irra-
than more complex algorithms that involve the informa-tional carriers and is independent of the carrier shape.
tion from a neighborhood or the entire image in the quanwith this analysis, the carrier period is optimized under
tization of each pixel. By introducing noninteger ratiosconsideration of the Fourier spectrum of the quantized
between the carrier and raster period, the carrier procémage and the characteristics of an incoherent imaging

dure can be adapted to the spectral characteristics of tegstem. Such systems, e.g., the imaging part of the hu-
visual system. The spectral noise distribution can benan visual system, are often the initial stage of process-
optimized in this regard for two-dimensional, periodicing systems for which binary images are produced.

carriers with arbitrary shape. Considering the distortions resulting from quantization
) and aliasing, we propose a two-dimensional carrier
1 Introduction method that is well adapted to imaging systems.

The widespread use of all sorts of printing and display 2 Sampling of Carrier and Image

devices of which many can reproduce only a few inten-

sity levels has encouraged the development of ever nelm digital image quantization as well as in related fields,
halftoning algorithms. Over the years, along with increassuch as the digital design of quantized diffractive ele-
ing computational power, the numerical complexity ofments, one has to deal with discrete data sets. These can
the algorithms has increased. Point-oriented algorithmsither be sampled continuous distributions, like scanned
such as those used in the carrier or ditherethods in- images, or computer generated ones. The sampling theo-
volve only the information at the pixel to be quantized.rem ensures a distortion-free sampling only for band-
More sophisticated algorithms, for instance, error diffu-limited signals with a sampling frequency above the
sionf® incorporate information from a neighboring re- Nyquist rate. Because the carrier method is a pixel-ori-
gion but obviously require more computational andented method, it is possible—and useful for the analy-
storage resources. Iterative algoritlithnally can in-  sis—to first consider the binarization for the continuous
clude the whole image information in the quantizationcase and then sample the binarized distribution. This
process of each pixel and call for appropriate hardwargarocedure is equivalent to first sampling the image and
In general, the more complex the algorithms are, the morhe carrier and then performing the binarization on a dis-
flexible they are and can be adjusted to generate imagesete raster. Because a binary distribution is not band-
with desired properties and to utilize fully the limited limited, aliasing effects occur that distort the image
capabilities of a given hardware. spectrum.

Despite the technical developments it is often desir-  There are some ways to overcome the drawbacks of
able to reduce the computational effort as far as posliasing effects. First, the sampling frequency could be
sible. For example, high-resolution devices deal withincreased so that aliasing effects are decreased. Second,
large amounts of data and require huge storage resourcds® number of quantization levels in the halftoning pro-
and high-speed processing when using error diffusiowedure could be increased. An infinite number of levels
or iterative algorithms, Low-end devices, on the otheresults in the sampled graytone image itself, where the
hand, are often kept as simple as possible to allow faaliasing effects caused by the carrier method are eliminated.
economical fabrication. Therefore, point-oriented meth-Both of these methods are normally not practical because
ods are still of interest and an important question is howhe sampling frequency and the number of gray levels are
to obtain an optimal result given their limitations. boundary conditions given by the output device.

In carrier procedures, the graytone image is modu- Parameters that can be influenced in a carrier method
lated with the carrier function and clipped using a fixedare carrier shape&'?2 and period. In this paper we con-
threshold. In this paper, we assume the carrier to be @ntrate on the carrier period. Because absolute values
periodic, one- or two-dimensional function. An improve- are insignificant, we consider the ratio between carrier
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periodp, and sampling periodx, which we will refer to  with the same period as the continuous one. Another point
as theperiod ratia Changing the period ratio from an is that the relatively high contributions of the next neigh-
integer number (which is often used) to a rational or irboring repetitions lie directly on the dc peak. por 4
rational number can reduce aliasing distortions drastifsee Fig. 1(a)] these are the fourth orders angfer2
cally. This has been demonstrated for one-dimensionahe second orders. As a consequence of the low-pass char-
carrier8*® where the rational period ratio can be inter-acteristic of imaging systems, in a halftoning process
preted as a rotated carrier with integer period ratio. Herene is often interested in keeping the dc peak and a sur-
we consider two-dimensional carriers with arbitraryrounding low-pass region free from distortions, so that
shape and present an approach to optimize the periddis behavior is undesirable.
ratio. The situation changes for noninteger, rational pe-
riod ratios
3 Consequences of Different Carrier Periods m
pc=FDN, for mnON . (5)
Consider a carrier functiotfx), with x = (x,y), periodic
in x andy. Without loss of generality, we assume equal
periods in both directions, i.e, = p, = p.,- The Fourier
transformT(l), with i = (W), of the carrier function
consists of a series & peaks, referred to as first and
higher orders, placed at the basic carrier frequencies in !
the Fourier plane and integer multiples of them.
Sampling of the carrier with raster periddlanddy

|

yields -3/2 -1 -2 0 1/2 1 a2 ¥
0x Oy O -1 rc;ctition o rel;rctit.ion 1ot rep'ef_itiou
t,(X) = t(x)comb =— omb 1
£ =t(xpcombc fomb (1) o
with the Fourier transform : ! ;
I I
T(W) = T(W* [comb(dxy) comb@yv)].  (2) i l i ! |
! i
where * denotes a convolution. The spectrum of the con- ! | I - 1 ; P ; L :. 3 . 11_ : ! -
tinuous carrier function is repeated with a period dk1/ -3/2 -1 -1/2 0 142 1 3/2
and 1By. Without loss of generality, we choode = dy . - . " .
= 1. Becaus#x) is usually not band-limited, higher or- —1°% repetition 0" repetition 1% repetition
ders of all repetitions extend into the central region of o)

the spectrum and distort it. Although we are interested .
only in ’ghe central reglon_, as Is seen '.n Sec. 5, W.e. h"’“/I‘—“a1gure 1. Aliasing effects for a one-dimensional periodic car-
to consider the contrlbutlons of the higher repetm.onsrier. Only three repetitions are shown. The superimposing or-
.Becaus_e the amp“tUd.es. UGy .“Sua"y decre?"se with ders of different repetitions are slightly displaced to be
increasing frequenpy it is sufficient to consider a feristinguishabIe: (a) =4 and (b) p=8/3.
surrounding repetitions.
Although it is not possible to eliminate the aliasing

effects without changing the carrier shape, the type of

. ! ) : As can be seen in Fig. 1(b), the orders of neighbor-
distortion qaused by it Iarge!y depends on the ratio bei'ng repetitions are interlaced. Only the peaks from the
tween carrier and raster period

+jn’th repetitions,j[IN, are superimposed on those of
the innermost spectrum, which gives rise to a less local-
ized distribution of the aliasing distortions. Furthermore,

x Pe: ©) the first peak that is located on the dc peak is now the
m'th order of then'th repetition so that the dc distur-
wheredx = 1 was used. bance should be much less than with integer period ratio
If the ratio between carrier and raster period is arand comparable period.
integer, i.e., These tendencies continue for irrational period ratios
p.ON, (4) p.LIRAQ, (6)

all the peaks of the repeated spectra superimpose. ThishereR denotes the set of real a@idhe set of rational
situation is shown in Fig. 1(a) f@ = 4, where the su- numbers. No longer are any two peaks of any two rep-
perimposing orders are slightly displaced to be distinetitions superimposed. Instead the aliasing distortions
guishable. Consequently, the spectrum of the sampleake homogeneously distributed compared with rational
carrier consists of the same frequencies as that of tha integer periods. We should mention that an irrational
continuous one, but the values have changed. This meanamber cannot be exactly realized by means of a com-
that the sampled carrier has a clear periodic structunguter. In digital halftoning it has to be approximated by
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a rational one, which is most often possible with suffi-an optimal period ratio with respect to the desired im-
cient precision. age properties. This is the purpose of the next section.

4 Quantization Noise in Carrier Halftoning
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In digital halftoning one is not only interested in the pg=:: ]
aliasing effects but in the quantization noise, which is g :::* e gl
in turn, connected to the carrier structure. It is useful t@g*: 1t
first consider the quantization of a continuous grayton
imagef(x) by a continuous carrier functidfx) and later
the effects caused by sampling. Il¢k) be the binary
image evolving fronf(x) through

b(x) = step f(x) —t(x)] (7
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Then the resulting quantization noigg&) = f(x) — b(x) e
can be expressed in the Fourier domaif as mw
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Q(u):gocjﬁ[F(u)—T(u)ﬂ‘é(u)]@ (0 g i a

whereQ(M), F(), andB(M) are the Fourier transforms
of g(x), f(x), andb(x), respectively is a constant (the
threshold) and! denotes g-fold convolution. Coeffi-
cientsc incorporate the nonlinearity involved in the
guantization process (normally the step function) and arg .
essentially proportional to (1). For a typical graytone *
image like the portrait used for the examples in Fig. X
the overall structure of the quantization noise can be *
deduced from Eq. (9) as follows: The spectrum of such. «
an image is concentrated around the dc peak and dg-{
creases quickly for higher frequencies. Because the spee-+
trum of the carrier consists dfpeaks, the resulting noise 7 ¥
is concentrated at these frequencies. Moreover, the mulk-+
tiple convolutions might introduce some additional peaks::
at which the noise is located and a slight broadening o# ¢
the noise concentrations. Although the deduction of th({:
exact structure of the noise from Eq. (9) is complicated s +
234 *
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the brief discussion above is sufficient for an optimiza-
tion of the carrier period. o
The analysis of the effects caused by sampling ancI ‘,ﬁ P YIS reerd
aliasing can be based on those described in the previoust-¢ # RSS2 A0 RdAa i ot il
section. As with sampling of the carrier alone for inte-Figure 2. Binarization of a graytone image with a two-dimen-
ger ratios between the carrier and raster period, the noisenal, pyramidal carrier with an integer ratio between the
peaks of all repetitions are superimposed, which resultsarrier and the raster period: (a).p= 4 and (b) p= 8.
in a binary image with clear periodic structure and strong
distortion around the dc peak. For rational period ratios,
some of the noise contributions are interlaced, leading
to a smoother noise distribution usually with fewer dis- 5 Optimization of the Carrier Period
turbing artifacts. For irrational period ratios, the noise
spectrum is broadened even more. However, because tiie adapt the carrier period with respect to the desired
height of the peaks decreases with increasing frequencynage properties, we should first consider the charac-
there will still be noise concentrations and no totallyteristics of the system into which the binary image is
homogeneous distribution. fed. This is often an incoherent imaging system like the
So far the global noise structure and the aliasing efimaging part of the human eye. If we consider a circular
fects have been evaluated; the remaining task is to choosegit pupil, the transfer function of such a system is a rota-
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tional symmetric low-pass filter with unaffected transmis-
sion of the dc peak and increasing attenuation of highe{
frequencies up to the cutoff frequency. Therefore, noise
. . . .76
close to the dc peak is most undesirable, noise close to the
border of the transfer function may be acceptable, and noise® -
above the cutoff frequency does not affect the formation g

of the retinal imagé! If a low-pass region free from Il .
noise can be generated, which is larger than the support _as 0.0 a5 o
of the transfer function, no difference between the (@)

graytone and the binary image is perceived. The larget™ ]
this low-pass region is, the smaller the resolution of the+
output device may be for a given cutoff frequency. 0.50
Because the first orders of the noise spectrum are
strongest, they should be above the cutoff frequency, a%¥® 7
far from the dc peak as possible, i.e., the carrier period A + <L :
. g ~D.5 0.0 05
should be as small as possible. We first concentrate on b}
integer carrier periods. The lowest practicable carrier
period isp, = 2 because the basic harmonic for lowerFigure 3. Central cross sections through the quantization noise
carrier periods cannot be sampled unambiguously. Thespectra of the corresponding images in Fig. 2: (aj)Qp. = 4
the first orders are located on the border of the innerand (b) Qf), p. = 8.
most repetition of the spectrum. But, as pointed out in
Sec. 3, now the second orders of the neighboring repeti-
tions are located directly on the dc peak. Because they In Fig. 2 two examples for integer period ratios are
are of relatively high amplitude, the resulting image isshown. In Fig. 2(a)p, = 4 and in Fig. 2(bp, = 8. The
of poor quality. carrier was a two-dimensional pyramid carrier resulting
Increasing the carrier period shifts the first ordersn diamond- shaped dots. In Figs. 3(a) and 3(b) cross
toward the center of the spectrum, thereby decreasimgections through the dc peak of the quantization noise
the size of the low-pass region, which is limited by thespectra of these two images are displayed, which were
placement of the first orders. But the orders that lie omomputed using a fast Fourier transform. Their behavior
the dc peak are now correspondingly higher and thus pras as expected from the considerations of Secs. 3 and 4.
vide less noise in the low-pass region. A compromisé-or p, = 4, the noise in the dc peak region, resulting
has to be made between size of the low-pass region amaainly from the fourth orders of the first repetitions, is
acceptable distortion directly around the dc peak. still quite high. Foip, = 8, however, it seems acceptable.

Figure 4. Binarization of a graytone image with a two-dimensional, pyramidal carrier with a noninteger ratio between the
carrier and the raster period: (a).= 8/3 and (b) p=e.
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Here it results mainly from the eighths orders of the firstratio of small integer numbers. Therefore, we propose
repetitions. [In Figs. 6(a) and 6(b) the two-dimensionako use Euler’s constapt = e. In Fig. 4(b) and Fig. 5(b)
noise distribution for the two cases is shown.] The lowthe corresponding picture and cross section through the
pass region of the spectrum essentially free from noiseoise spectrum are shown, and in Fig. 6(d) the two-di-
is below 5% foip, = p (circular symmetric transfer func- mensional noise spectrum. In the image, the strong regu-
tion assumed) and the sampling frequency has to be hidarity from Fig. 4(a) is broken up. Regarding the noise
enough that the cutoff frequency lies within this limit. spectrum, it is noticeable that there is practically no noise
By usage of a rational or irrational number not tooin the dc region and the remaining noise peaks have been
close to an integer, the necessity of this compromise caameared out. Thus we again have a low-pass region of
be avoided and the first orders can be shifted to the boabout 20 or 45% of the spectrum, depending on the qual-
der of the spectrum by choosing a carrier period close tidy requirements, but with an even more acceptable dis-
two while simultaneously suppressing the noise on théribution of the noise inside this region.
dc peak. If, as above, we accept eighths orders on the dc
peak, a reasonable choicefis= 8/3. Then again the 6 Conclusions
eighths orders of the third repetitions are superimposed
in the center of the spectrum. In Fig. 4(a) an imagen digital halftoning, carrier methods have some advantages
halftoned with the same carrier shape as in Fig. 2 ithat make them an appropriate choice when dealing with
shown, only with the carrier period changed to 8/3. Thedarge, high-resolution images or whagh-speed process-
image texture is obviously much finer, due to the facing is required. In contrast to other halftoning techniques,
that much of the noise has been shifted to higher frethey do not require storage of parts of the image and
guencies. Because there are relatively few locations dfivolve only a few simple computations for the quanti-
noise peaks, the texture is still very regular. A cross secation of a pixel. In this paper we have presented a way
tion through the corresponding quantization noise spedo adapt two-dimensional carrier procedures to the char-
trum in Fig. 5(a) and the two-dimensional noiseacteristics of the transfer function of the visual system
distribution shown in Fig. 6(c) confirm our expectations.within the inherent limitations of such procedures. We
The cutoff frequency can be extendeqito 1/4 because have proposed the use of a small, irrational ratio of car-
the transfer function is already quite lowpat 1/8 and  rier and raster period not too close to an integer number
the small noise peaks there are acceptable. Thus oy ratio of two small integer numbers and have exam-
changing the carrier period to the rational value of 8/3ned the special case pf=e. In this way it is possible
the usable region of the spectrum has been extended tiw reduce distortions resulting from aliasing, to achieve
20%. If a somewhat lower quality is acceptable, so thaa low-pass region with only very low noise remaining,
the peaks gt = 1/4 are also allowed to be transferred, itand to shift most of the noise energy to high frequen-
would be about 45%. cies. The procedure is applicable for both one- and two-
dimensional carriers and signals, independent of the
particular carrier shape. The periodicity and carrier shape

1.06 1 may differ in the horizontal and vertical direction as well,
0.75 4 although in our examples we assumed them to be the
ogo same. Additionally, if the image has periodicities below
the cutoff frequency, it might be advantageous to con-
0,254 sider them when choosing the carrier frequencies to mini-
e L + A ko , mize interactions between the carrier frequencies and
-03 o0 05 # periodic image components. However, this implées
(@) priori information about the image and its frequency
100 content. The proposed procedure may be useful in other
fields as well, e.g., in diffractive optics for the design of
0.7 diffractive elements, if a large space-bandwidth-prod-
0.50 uct is more important than a high diffraction efficiency.
o = N B A Note added to communicate reviewer's commi&fet
o8 00 05 u thank the reviewers for pointing out that after the sub-
{b) mission of our paper Peter G. Anderson presented a simi-

lar topic at a conferencé®Anderson is also concerned
Figure 5. Central cross sections through the quantization noisavith carrier procedures and provides a method for gen-
spectra of the corresponding images in Fig. 4: (auQp. = erating halftone masks. Our approach is based on a physi-
8/3 and (b) QQ), p. = e. cal model of an imaging system and the corresponding
Fourier analysis; Anderson’s approach on the other hand
is a more mathematical one. His goal is to fill a halftone
The situation can still be improved by switching tothreshold mask smoothly and completely with values
an irrational number. To conserve the overall situatiorusing an approximation of the golden mean given by
as withp, = 8/3 a period close to that one is preferablesuccessive Fibonacci numbers. He also suggests a two-
To take full advantage of the fact thatis irrational, it  dimensional procedure using a Fibonacci-like series to
should be neither too close to an integer number nor togenerate two-dimensional rectangular halftone masks. It
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Figure 6. (a) and (b) Quantization noise spectrum of the images shown in Figs. 2(a) and 2(b). (c) and (d) Quantization noise
spectrum of the images shown in Figs. 4(a) and 4(b).
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